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Abstract 

We investigated the potential influence of land-use and climate change on urban hydrology for an 

urbanized watershed located in Columbia, South Carolina (USA). The Personal Computer Storm 

Water Management Model (PCSWMM) was used as an urban hydrology model to formulate the 

low impact development (LID) controls on runoff for flood mitigation. We used ensemble 

projections provided by the North American Regional Climate Change Assessment Program 

(NARCCAP) for the climate change assessment. The results for future periods (2038-2069) show 

an increase in mean annual runoff from 40% to 70%. The LID mitigation strategies were compared 

based on the rain barrel, rain garden, and a combination of both approaches to evaluate the potential 

reduction in urban flooding. It is recommended that LID practices should be used synergistically 

with improved drainage facilities for successful stormwater management. This analysis will help 

stakeholders to develop strategies to minimize the socio-economic impacts due to urban flooding.   
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1. Introduction  

Due to the rapid population growth and other external factors like technological 

development and social reforms, urbanization in the USA has increased significantly. Since 1910, 

there has been nearly 500% growth in the urban population, while the rural population has grown 

by 19% (Hobbs and Stoops, 2002). The urban population percentage was 75.3% and 82.3% for 



the years 1990 and 2018, respectively, and it is expected to reach 89.2% in 2050 (UN-DESA, 

2018). Urbanization occurs due to the conversion of natural landscapes to developed land for 

residential, commercial, or industrial purposes (Ahiablame and Shakya, 2016; Roy et al., 2008). 

Urbanization increases imperviousness cover, and as a result, it decreases infiltration and increases 

stormwater runoff compared to natural or pervious surfaces (Harbor, 1994; Seth and Norman, 

2001). Besides, the amount of sediment washed into stream exacerbates the impacts on water 

quality (Hall et al., 1999; Ren et al., 2003; Tu, 2011) and causes pollution, thus harming the 

ecosystem and natural habitat of aquatic animals and plants (Chadwick et al., 2006; McKinney, 

2008; Seto et al., 2012). Various stormwater management facilities  are typically designed based 

on the historical streamflow data, assuming that the future climate will remain stationary. The 

future stormwater runoff characteristics (e.g., peak flow) may not exceed the recorded information. 

However, climate change is likely to impact extreme precipitation characteristics (i.e., intensity, 

duration, and frequency), including  Intensity-Duration-Frequency (IDF) curves widely used to 

design civil infrastructure systems (Mishra and Singh, 2010; Vu and Mishra, 2019; Konapala et 

al., 2020). 

Urbanization and climate change likely to alter the urban hydrologic processes (e.g., higher 

runoff, lower infiltration). Willuweit et al. (2016) applied Dynamic Urban Water Simulation 

Model to Dublin city in Ireland to explore the urban runoff pattern under changing urban growth 

and climate scenarios. It was observed that the combined effect of climate and land-use change 

could potentially increase the monthly runoff by about 57%. Zahmatkesh et al. (2014) used 

precipitation projections from Intergovernmental Panel on Climate Change (IPCC) Coupled 

Model Intercomparison Project (CMIP5) in a New York City watershed. They concluded a 

substantial increase in future urban runoff volume and peak flow rate. In a study by Waters et al.  



(2003), climate change contributed to the rise in the total runoff volume by 19% for a small urban 

catchment in Ontario using Global Climate Model (GCM) simulations. Overall, these studies have 

shown that the effects of climate change on watersheds may vary. When coupled with urbanization, 

the two factors can operate synergistically, increasing stormwater runoff magnitude (Pyke et al., 

2011). 

The increase in runoff due to urbanization has been well documented. In a recent study, 

Akhter and Hewa (2016) predicted a 50% and 320% increase in the mean annual runoff by 

increasing urbanization percentage by 10% and 70% for Myponga Catchment in South Australia 

respectively. Ahiablame and Shakya (2016) projected a 63% increase in the runoff between 1992 

to 2050 in the City of Normal-Sugar Creek Watershed in Central Illinois. Similarly, Yan and 

Edwards (2012) studied three different watersheds in Arkansas and identified that between 1993 

to 2019, there was an average increase of flood peak discharge by about 178%. Huong and 

Pathirana (2013) reported a rise in the overall runoff by 21% due to a 55% increase in urban areas. 

A study conducted by Bhaduri et al. (2001) revealed that for a 10% increase in imperviousness, 

the annual average runoff increased by 10%.  

A variety of concepts have been developed over time to mitigate the increasing amount of 

urban runoff. For example, Low Impact Development (LID) focuses on local treatment, retention, 

re-use, infiltration, and conveyance of excess runoff with an overall goal to preserve the pre-

development hydrology of a site (Prince George’s County, 1999). As opposed to conventional 

stormwater management techniques, LID uses cost-effective and straightforward techniques (e.g., 

rain-garden and green roof) that are not limited to protecting the watershed and maintaining its 

hydrological regime. The implementation of LID structures has proven to offer a more sustainable 

solution to stormwater management at both site-scale and watershed-scale (Roy et al., 2008; Lee 



et al., 2012; Guan et al., 2015). Previous studies have shown promising results for both individua l 

and combination of LID controls like porous/pervious pavements (Legret and Colandini, 1999; 

Ahiablame and Shakya, 2016), bioretention areas, and rain gardens (Dietz and Clausen, 2005; 

Davis, 2008), rain barrels (Abi et al., 2009; Jones and Hunt, 2010), grass swales (Abida and 

Sabourin, 2006; Stagge et al., 2012) and vegetative roofs (Carter and Rasmussen, 2006; Carter and 

Jackson, 2007) among many others. Many studies have been conducted to examine the 

performance of LID for improving stormwater management (Davis, 2008; Line et al., 2012; Trieu 

et al., 2001; Steffen et al., 2013). Multiple studies by Davis (2008), Line et al. (2012), Chapman 

and Horner (2010), and DeBusk and Wynn (2011) reported up to 58%, 49%, 74%, and 97% 

reduction in the runoff after the use of Bioretention areas, respectively. The LID techniques impact 

water flows, but water volume reduction is minimal in extreme events and sensitive to local 

conditions, such as size and duration of the rainfall event, soil material, and texture (Zhou 2014).   

The rainfall inputs for model development used in previous studies are derived based on different 

assumptions for climate change impact assessment. For example, Gill et al. (2007) used projected 

rainfall inputs from a stochastic weather generator model. They assumed the projected rainfall is 

based on the 99th percentile of these stochastic model outputs. Pyke et al. (2011) applied the 

Change Factor approach (CFs) to assume that the precipitation likely to increase/decrease 

uniformly 20%. Zahmetkesh et al. (2015) used the Change Factor approach, which is to add a 

change factor (Delta) to the observation data (to create a dummy time series) and considered that 

the projected climate data. These rainfall inputs do not adequately represent future climate change 

scenarios, as they are simulated from the observed data sets. It is important to highlight that the 

spatio-temporal rainfall information plays a vital role in climate change impact assessment. It 

should be appropriately included during the model building processes (Maraun et al., 2010). To 



overcome such limitations, we used the dynamically downscaled climate data from Regional 

Climate Models from NARCCAP, which can adequately capture the projected climate change 

scenarios.  

This study provides a comprehensive analysis of the potential impact of Land-use, Climate 

change, and Low Impact Development Practices on Urban Flooding. Besides, this study area was 

significantly affected by the most severe extreme flooding event during the 1st week of October 

2015. The extreme rainfall event associated with this historical flooding event was considered a 1-

in-1000-year event (Feaster et al., 2015; Vu and Mishra, 2019) is included in the model 

development. Different land use and meteorological forcing scenarios obtained from dynamical 

downscaled Global Climate Models are evaluated in this study. This study's main objective is to 

investigate the sensitivity of stormwater runoff based on the historical and projected land-use and 

climate change scenarios in an urban watershed. This study also aims to evaluate LID practices 

that are used to mitigate the runoff at a watershed scale. The specific objectives are to (a) develop 

a well-calibrated stormwater management model for an urban watershed using a rainfall-runoff 

simulation model PCSWMM; (b) quantify the changes in runoff due to various land-use and 

climate change scenarios; and (c) to evaluate the effectiveness of two primary LID practices (rain 

garden and rain barrels) in reducing runoff. This study seeks to help water resource managers make 

informed decisions that aim to minimize stormwater runoff significantly.  

The concept of socio-hydrology is an emerging topic (Di Baldassarre et al., 2015; Pande 

and Sivapalan, 2016), which has gained significant attention in recent decades. This study 

highlights that the urban flood risk mitigation measures can be a useful tool for socio-hydrology. 

For example, a robust policy can be implemented to control density regulations, zoning, ecosystem 

zones, and adequate stormwater retention ponds to ensure flood water is adequately controlled. 



2. Study area and methodology 

2.1.  Study Area 

The study area comprises two sub-watersheds located in the state of South Carolina in the 

United States. These two sub-watersheds are the Upper Congaree River (80%) and Outlet Saluda 

River (20%) that cover an area of 138 km2 (Figure 1). The Digital Elevation Model (DEM) was 

obtained from Light Detection and Ranging remote sensing (LiDAR) at a resolution of 3m from 

the South Carolina Department of Natural Resources (SCDNR). This study area is characterized 

by a variety of land cover types, including forests and cultivated land. Most of the study area is 

developed with large-lot family housing units. The eastern part of the study area consists of the 

highly developed downtown Columbia region with a mixture of park, residential, and commercial 

areas. From the year 1992 to 2011, there was a 24% increase in an urban area (Figure 2), and a 

detailed description of the percentage of watershed areas for urban, non-urban, and wetlands are 

tabulated in Table 1. On the contrary, the forest and the agricultural regions decreased by 45% and 

97%. This study area was significantly affected by the flooding during the historical extreme 

rainfall event during the 1st week of October 2015. This extreme rainfall event can be considered 

as a 1-in-1000-year event (Feaster et al., 2015; Vu and Mishra, 2019). 

2.2.  Hydro-meteorological datasets 

Daily average streamflow data were obtained from the USGS website for three stations 

(US02168504, US02169000, and US02169500) located in the study area (Figure 1). The stations 

US02168504 and US02169500 were treated as inflow and outflow boundary conditions, 

respectively, in model development. The data available for the station US02169500 was used for 

model calibration and validation. According to our calculation, the relative contribution of inlet 



station US02168504 is about 28% of the outlet station US02169500.  The streamflow hydrograph's 

base flow component was separated using a Web-based Hydrograph Analysis Tool (WHAT) (Lim 

et al., 2005). Precipitation data was obtained from the National Oceanic and Atmospheric 

Administration (NOAA) and was verified using data from the PRISM Climate Group 

(http://www.prism.oregonstate.edu/). The rain gauge station (ID: USW00053867) is located about 

12km southeast of the basin centroid (Figure 1). Similar studies by Cantone and Schmidt (2011), 

Broekhuizen et al. (2019), and Lee et al. (2018) also using one representative rainfall station for 

the urban region. Average monthly evaporation data were collected from the National Weather 

Services - Climate Prediction Center. Land-use maps were taken from National Land Cover 

Dataset (NLCD) for 1992, 2001, 2006, and 2011. The land-use was reclassified (Figure 2) as High 

Intensity (medium intensity land-use), Low Intensity (open space and developed low-intensity 

land-use), Grass/Pasture (grassland/herbaceous and pasture/hay land-uses), Forest/Woods 

(deciduous forest and evergreen forest), Agricultural (cultivated crops), Water/Wetland (open 

water, woody wetlands, and emergent herbaceous wetlands), and Barren Land (bare rock, bare 

sand, and bare clay). This was used to calculate each sub-catchment percentage imperviousness 

using NOAA’s Impervious Surface Analysis Tool (ISAT) using an ESRI ArcGIS Pro platform. 

Population data were obtained from the United States Census Bureau in the form of TIGER/Line 

shapefiles. 

 

2.3.  Projected land-use maps 

To simulate the climate change impact on local water resources management, we predicted 

the land-use map for the year 2050 using the best fit curve approach. We assume that the land-use 

map-projected for the year 2050 can correspond to the future climate change scenarios for 2038-

http://www.prism.oregonstate.edu/


2069.  First, the scatter plot between the percentage of urban areas from NLCD 1992, 2001, 2006, 

2011, and a best-fit curve was constructed.  It is assumed that urbanization in the year 2050 would 

follow a similar statistical pattern based on the best fit curve. The best fit curve implies an upward 

trend in urbanization, having the total urban area for 2050 is 80% (as opposed to 68% in 2011), 

indicating an urban area of 120 km2. Subsequently, a land-use map of the projected year 2050 has 

been constructed based on 2011. The analysis was done using ESRI ArcGIS Pro, and the critical 

parameters were defined as land-use, slope, and road proximity (Kumar and Shaikh, 2013). Grid 

& Raster Editor tool available in ArcGIS Pro was used to manually change the pixel values from 

forest or agricultural land to urban landscaping.  

2.4. Stormwater runoff modeling: PCSWMM and model sensitivity analysis 

USEPA Storm Water Management Model (SWMM) is a computer program that simulates 

dynamic rainfall-runoff for a single event and long-term (continuous or period-of-record) runoff 

quantity and quality (James et al., 2005). Personal Computer Storm Water Management Model 

(PCSWMM) is a proprietary stormwater modeling software that integrates the SWMM 

computational engine with a geographic information system (GIS). For the model development, 

PCSWMM version 7.1.2480 from Computational Hydraulics International company (CHI) was 

used. Using DEM from SCDNR, the PCSWMM’s Watershed Delineation Tool (WDT) was run to 

delineate sub-catchments (Figure 1). The WDT tool works similarly to other watershed delineation 

tools, except it uses the concept of target sub-catchment size rather than a minimum area for 

channelization. Based on the flow direction, slope and contributing area layers were generated for 

each sub-catchment. Lastly, the streams and flow path layers are created, which show the stream 

networks and their direction. The streams and flow path layers are used to develop the Conduits 

layer, which is a key element to represent channels that move water from one node to another in 



the conveyance system in PCSWMM. To represent the Conduits layer's irregular cross-section, a 

Transect object is used to define how depth varies with the distance across the cross-section. 

Transects are created using Transect Creator and Transect Editor tools, which use the elevation 

data from the provided DEM layer. Other input parameters used in the Conduits layer are 

Manning’s roughness, inlet and outlet node inverts, and length.  

The watershed was divided into 106 sub-catchments, 7473 nodes, and 7950 links (Figure 

1) to adequately represent the land-uses, topography, and drainage pattern of the watershed. The 

stormwater management infrastructures (pipes, gutters, swales, catch basins, etc.) were not 

considered in this model. It was assumed that these structures' stormwater would eventually drain 

to the natural flow paths (Abdul-Aziz and Al-Amin, 2016).  The model simulated surface runoff 

at each sub-catchment, node, and link was calculated. The SWMM model has long been used in 

various urban hydrology prediction and management (Tsihrintzis and Hamid, 1998; Jang et al., 

2007; Li et al., 2010). In this study, a sensitivity analysis was performed to determine the model-

sensitive parameters after assigning user-defined uncertainty values (or ranks) for each parameter 

(see the Appendix, Table A1). The range of uncertainty values was derived from “Rules for 

Responsible Modeling” (James, 2003). The available data record is 16 years (1st January 2000 to 

31st December 2015) on a daily scale. The model was calibrated using the Sensitivity-based Radio 

Tuning Calibration (SRTC) tool for ten years (1st January 2006 to 31st December 2015) and 

validated for six years (1st January 2000 to 31st December 2005). The daily rainfall data from 

NOAA and land-use data from NLCD 2011 were used for model calibration and validation. The 

average daily runoff obtained from the model was compared to runoff values of daily flow from 

USGS station 02169000. The model performance was evaluated using the Nash-Sutcliffe 



Efficiency (NSE) coefficient and coefficient of determination (R2) values for both daily and 

monthly scales. 

2.5.  SWMM LID modeling 

In SWMM, a combination of vertical layers is used to represent LID controls. Each layer's 

properties are defined on a per-unit-area basis, allowing them to be implemented in multiple sub-

catchments of different sizes. Evaporation, infiltration, runoff, and water storage through each 

layer are tracked by performing a moisture balance. In this study, two LID elements (rain garden 

and rain barrel) were used. In PCSWMM, a rain garden is represented using a combination of 

surface, soil, storage, and drain parameters (see the Appendix, Table A2, Figure A1). A rain barrel 

is represented using only storage and drain parameters (see the Appendix, Table A3, Figure A1). 

The surface overflow of the LID components was directed back to the sub-catchment, and flow 

from the underdrain was directed into the outlet of the sub-catchment.  It was also assumed that 

there are no clogging issues and no underdrain. The number of rain garden units was determined 

according to the sub-catchment impervious cover. For a rain barrel case, each one was assumed to 

have a capacity of 350 liters and was 1.2 m tall and 1.5 cm in diameter (Ahiablame and Shakya, 

2016). It was set up to receive 50% of runoff from the roof, and draining time was assigned 6 hours 

(see the Appendix, Table A3). The number of rain barrels was calculated using the population data 

and by assuming a homogeneous population density. 

2.6.  Climate projections from NARCCAP 

This study assesses the impact of climate change on local water resource allocation using 

the ensemble output from the Regional Climate Modeling (RCM) of the North American Regional 

Climate Change Assessment Program (NARCCAP) (Mearns et al., 2012). Phase II of NARCCAP 



utilized the boundary conditions from four different Atmosphere-Ocean Global Climate Models 

(AOGCMs) and six different RCMs. The simulations were run for baseline climate 1968-1999 and 

the climate projection 2038-2069 forced using the Special Report on Emissions Scenarios A2 

scenario (SRES). According to the fourth assessment report (AR4) of IPCC (2007), the SRES A2 

scenario is referred to a very heterogeneous world of continuity increasing population and 

regionally oriented economic development with slow economic growth and technological change 

to preserve local identities. A total of 12 pairs of AOGCMs and RCMs are formed in NARCCAP, 

followed by a balanced statistical design. Similar to Kim et al. (2017), this study selects a sub-set 

of five pairs of AOGCMs-RCMs that can provide the best ensemble study for climate change 

impact over South Carolina. The acronyms of selected GCM/RCM and five chosen pairs for 

NARCCAP models are tabulated in Table 2. 

The NARCCAP model outputs provide 3-hourly interval precipitation data over a spatial 

resolution of 50km for the North American region. Even though dynamical downscaling data 

produces a finer resolution compared to driving GCMs, there still exists the model bias for each 

of the RCM. To remove these precipitation biases from RCMs, the non-parametric quantile 

mapping approach (or distribution mapping) was used. According to Teutschbein and Seibert 

(2012), the quantile mapping approach is the best bias correction method for both precipitation 

and temperature variables. This approach has been used in various RCM bias correction studies. 

The formulation for the quantile mapping approach is shown in equation (1) for a given 

precipitation time series “x” for a particular month:  

( )1
mc oc mc mcx F F x−=   %      (1) 



In which: x% is the bias-corrected precipitation. F is the fitting function (in this case: gamma 

distribution), and F-1 is the inverse of the fitting function; ‘o’ and ‘m’ stand for ‘observed’ and 

‘modeled’ with the ‘c’ is ‘current’ climate. Equation (1) was used to correct the bias between the 

observed and climate model at the baseline period. For climate projection, the equidistance 

quantile mapping approach is applied as shown in equation (2) with the information from 

observation and climate model at baseline and future period (Vu et al., 2017a; Srivastav et al. 2014; 

Mirhosseini et al. 2013; Li et al., 2010): 

( ) ( )1 1
mp mp oc mp mp mc mp mpx x F F x F F x− −   = + −   %    (2) 

In which denote ‘p’ stands for ‘projected.’ 

2.7.  Scenario analysis 

Different scenarios were investigated to evaluate the potential impact of the projected 

climate and land cover change by using calibrated hydrologic model PCSWMM. Scenario 1 has 

four cases (U1-U4), where the urbanization with the change in urban coverage of land cover map 

varies from 10% to 70% (Table 3). Using NLCD land cover for the years 1992, 2001, 2006, 2011, 

and 2050 (scenario 2), cases LU1 to LU5 were created to evaluate the actual change in the past. 

The effectiveness of LID practices for reducing runoff was evaluated using scenario 3 for the land-

use 2011 (cases L1-L3). Furthermore, cases C1 to C5 of scenario 4 were used to study the climate 

change impacts from different rainfall projections without the incorporation of LID structures in 

the model. For all scenarios, we assume that the contribution of inflow station US02168504 is 

stationary.  

 



3. Results  

3.1.  PCSWMM: Model calibration and validation 

The sensitivity analysis was conducted using the SRTC tool. It was observed that the sub-

catchment width, slope, percent of imperviousness, and curve number were the most sensitive 

parameters.  Our result is consistent with the findings from Ahiablame and Shakya (2016), Akhter 

and Hewa (2016), Abdul-Aziz, and Al-Amin (2016). The goodness of fit index Nash-Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe, 1970) and coefficient of determination (R2) were used to 

evaluate the performance of the PCSWMM hydrologic model using daily streamflow at the 

downstream station US02169500. The coefficient of determination R2 is defined as the squared 

value of the correlation coefficient. The NSE is considered to be the most appropriate relative error 

or goodness-of-fit measure available owing to its straightforward physical interpretation (Legates 

and McCabe, 1999). The NSE and R2 values for calibration period (2006-2015) are 0.79 and 0.81, 

and for validation period (2000-2005) are 0.76 and 0.80 respectively (Figure 3a). The goodness of 

fit measures NSE and R2 values of the range 0.8 are considered a good fit indicator for model 

performance on a daily scale (Vu et al., 2017b). 

We compared the additional goodness of fit indices such as NSE for Q0.2 and RMSE for 

the logarithm of streamflow (Nicolle et al., 2014, Vu et al., 2017b) between the simulated and 

observed runoff. The NSE results for Q0.2 for calibration and validation are 0.96 and 0.94, while 

the RMSE on ln(Q) are 0.52 and 0.53, respectively. This additional goodness of fits on low flow 

suggests the study region's PCSWMM model's better performance during the dry season. The 

calibrated PCSWMM model still underestimated the high flow for a specific year in 2012 and 

2014 (Figure 3a). The model also underestimated the peak flow for 2001, 2002, and 2004. Erickson 

et al. (2010) explained this underestimation of runoff volume in the SWMM model could be 



associated with the “off the top” approach, which suggests that evaporation is subtracted during a 

rainfall event before infiltration and runoff are estimated (James et al., 2008). This may lead to the 

underestimation of runoff (Schomberg et al., 2000). Similar findings are observed in previous 

studies by Pinos and Timbe (2019), Broekhuizen et al. (2020), and Larabi et al. (2018). In this 

study, the calibrated PCSWMM model matched well with the historical flooding event in 2015 

(Figure 3b). Both NSE and R2 for the simulation of the thousand-year return period flooding event 

in 2015 are above 0.98 compared to observed data. This is similar to other event-based simulations 

as in Borah et al. (2007), Mejia and Moglen (2010), Hossain et al. (2019). 

3.2. Impact of Urbanization and land-use change on runoff 

Two land-use scenarios are evaluated in this study. In the first scenario, four cases (U1 to 

U4) are investigated by increasing the urbanization area between 10% to 70% concerning the 

baseline land cover (NLCD 2011). In the second scenario, four actual land-use cases (LU1 to LU4) 

based on the NLCD for the years 1992, 2001, 2006, and 2011 are considered, and in addition to 

that, the projected land-use (LU5) for the year 2050 is also included (Table 3).  

The calibrated model PCSWMM was simulated for the whole study period of 2000-2015 

using four different land cover cases (Scenario 1, Table 3) by increasing urbanization from the 

baseline period (NLCD 2011). Due to the transition from the pervious to the impervious surface, 

the infiltration and groundwater flow is reduced; hence, more runoff is expected to occur. 

Compared to baseline (using NLCD 2011), all urbanization cases show an increasing trend in the 

mean annual runoff. The mean annual runoff simulated based on the four (U1-U4) cases (Figure 

4) indicated a steady increase when increasing the impervious area. The increase in impervious 

cover has a significant impact on the extreme event; in particular, the peak flow during the 2015 

historical flood indicates that by increasing (with a based period 2011) the impervious surface to 



10%, 30%, 50%, and 70%, the corresponding annual flow likely to increase by 25%, 45%, 80%, 

and 120%, respectively.  

Different land-use maps (LU1-LU5) obtained from NLCD for four different years 1992, 

2001, 2006, 2011, and the projected map for 2050 was used as input to the calibrated PCSWMM 

model to simulate flow during the study period 2000-2015. The average annual runoff computed 

for LU1 to LU5 based on the percentage of urban areas for each NLCD year. The percentage of 

urban areas for the year 2050 was extrapolated using the exponential fitting curve based on the 

four NLCD survey years (Table 1). As the percentage of the urban area (%) increases, the 

simulated mean annual runoff volume also increases to the magnitude of 108, 120, 128, 135, and 

167 thousand m3/day corresponding to the year 1992, 2001, 2006, 2011, 2050 respectively (Figure 

5). In comparison with the land-use map in 1992, the projected land-use in 2050 has increased 

mean annual runoff volume of 54%. In a nutshell, urbanization leads to an increase in the 

impervious area, reducing groundwater flow and increasing surface runoff.  

3.3. Impact of LID on runoff 

Two commonly used LID practices (rain gardens and rain barrels) are evaluated to 

minimize excessive runoff under extreme weather conditions. The rain barrel (case L1) collects 

water from shingle roofs into buckets, whereas the rain garden (case L2) temporarily stores 

excessive water in the underground storage. The combination of both rain garden and rain barrel 

(case L3) is investigated, although this seems to be a more expensive selection. The calibrated 

PCSWMM model was used to investigate the three LID cases (L1, L2, and L3) based on the NLCD 

2011 for the study period 2000-2015 (Figure 6) in comparison with the scenario with no LID 

application. In this study, the simulation was based on daily runoff, showing the effect of LID 

controls only on the volumes of the flood events but not on the peak flows.  Overall, by 



incorporating the LID practices, the mean annual runoff volume was reduced for all simulated 

years; however, the performance of LIDs varies widely. Compared to without LIDs, the rain barrel 

approach (L1) reduced the total annual runoff by about 10%. The rain garden approach (L2) can 

further capture the roof's rainfall amount to its underground storage and reduce the total annual 

runoff to 21%. The combined system (case L3) can hold up the excess runoff to its maximum 

capacity of 32%.  In any LID scenario, it is observed that during small rainfall conditions, the 

runoff can sufficiently be stored in its storage layer, generating a lesser amount of runoff.  

However, during increased rainfall conditions, the LID elements' storage capacity is insufficient, 

thus causing the increased runoff values. Although this runoff is still lesser than the runoff 

observed in the baseline scenario, the percentage of runoff volume reduction is not significant due 

to the LID elements' size limitation. 

3.4. Impact of climate change on runoff 

The previous sections discussed the relationship between urbanization, land cover changes, 

stormwater control using LID practices, and surface runoff. This section analyzes the potential 

influence of climate change scenarios and land cover projection on urban runoff compared to the 

baseline climate. In scenario 4, five cases (C1-C5) are evaluated based on the GCMs rainfall 

downscaled from the five selected NARCCAP models as tabulated in Table 2. The baseline climate 

data is bias-corrected with observed data using the non-parametric quantile mapping approach. 

The projected climate data is bias-corrected using the equidistance quantile mapping approach. 

The bias-corrected precipitation is then used as input to the calibrated PCSWMM model for (1) 

baseline climate 1968-1999 using the land cover map from NLCD 1992 and (2) projected climate 

2038-2069 using the land cover map from NLCD 2050. The daily runoff output from the 

PCSWMM model is used for further evaluation.  



In this study, the mean annual runoff volume computed for the baseline and projected 

scenarios are evaluated (Figure 7). The result displayed in Figure 7 clearly shows the uncertainty 

among NARRCAP models. For instance, using the same GCM CGCM3, the RCM3 indicated a 

slightly higher mean annual runoff captured at the Columbia station than CRCM. The anomaly in 

the projected runoff for CGCM3-RCM3 with respect to baseline is about 65% compared to 55% 

for CGCM3-CRCM. Figure 7 also exhibits the climate sensitivity among different GCMs. For 

example, the Canadian GCM CGCM3 produces more rainfall than the American GCM CCSM, 

which was downscaled using the same CRCM. The GFDL is wetter than CGCM3 (downscaled by 

the same RCM3). However, the climate sensitivity uncertainty is different in the anomaly 

calculation. The anomaly is significantly higher in CGCM3-RCM3 (65%) compared to GFDL-

RCM3 (40%), but it is the same for other CCSM-CRCM and CGCM3-CRCM (both at 55%). 

Overall, there has been a significant increase in runoff volume based on the projected climate and 

land-use scenarios compared to the baseline runoff. The percentage change ranges from 40-70% 

in mean annual runoff at the selected stream gauge station. It is noted that the projected land-use 

in 2050 can potentially increase the mean annual runoff volume of up to 54% compared to the 

land-use map in 1992. 

4. Conclusions 

This study utilizes the urban hydrologic model PCSWMM in simulating the surface runoff 

for the Upper Congaree River and Outlet Saluda River near Columbia, South Carolina. The city 

witnessed a thousand-year event rainfall in October 2015, resulting in a 2 billion dollars loss of 

damages. Due to the rapid urbanization and the reduced hydrologic time of concentration, the time 

to peak and the magnitude of surface runoff increased, leading to difficulty in draining the massive 

stormwater in a short amount of time. The PCSWMM is used to perform the potential influence 



of climate change, land uses, and LID practices on urban flooding. Various scenarios are evaluated 

to demonstrate the ability of LIDs to mitigate urban runoff due to the rapid increase in urbanization 

and climate change. The following observations were made in this study: 

(a) Urbanization leads to an increasing impervious surface, which resulted in reduced infiltration 

and groundwater flow and higher surface runoff. Mainly, during a thousand-year return period 

storm event (e.g., occurred in 1st week of October 2015), the existing infrastructure could not 

withstand the most severe flooding. If the impervious cover increased by 10%, 30%, 50%, and 

70%, the annual flow might increase by approximately 25%, 45%, 80%, and 120%, respectively, 

compared to the baseline land cover NLCD 2011. 

(b) Flood mitigation level using Low Impact Development practices is evaluated based on three 

different approaches: rain barrel, rain garden, and a combination of both. For this particular 

catchment area, LID plays a significant role in mitigating the water runoff with an average 

reduction of 10%, 21%, and 32%, respectively, for the three approaches. Rain gardens proved to 

be more effective than rain barrels to reduce runoff, while the combination of both LIDs performed 

best. The cost-effectiveness of the LID practices plays a pivotal role when choosing LID practices. 

(c) In comparison with baseline climate (using baseline land cover), it is expected that the 

percentages of mean annual runoff volume will increase by 40-70% based on the projected land-

use (2050) and climate change scenarios (2038-2069).    

In addition to installing LID components, the improvement of existing storm drainage 

infrastructures also needs to be prioritized. When integrated with improved traditional drainage 

forms, LIDs can successfully manage stormwater runoff under the future urbanization and climate 

change scenario. This study can be further extended to evaluate other LID controls like porous 



pavements, vegetative swales, etc. The potential future work can focus on developing a robust 

downscaling procedure for urban hydrology-related applications by adequately addressing 

uncertainties associated with global climate models and sparse data and capturing the extreme 

rainfall events and sub-daily rainfall for urban flooding applications. This extreme rainfall 

information can help to improve instantaneous peak flow from daily flow data to assess the LID 

effects not only on runoff volumes but also on instantaneous peak flow. 
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Table 1. Land use classification for the selected watershed 

Landuse type 

Percentage of watershed area (%) 

Year 1992 Year 2001 Year 2006 Year 2011 

Urban area 60.21 65.45 67.69 68.44 

Non-urban area 36.2 29.7 27.54 26.81 

Water/Wetland 3.59 4.85 4.77 4.75 

Table 2. NARCCAP models used for study 

Global Climate Models (GCM) Regional Climate Models (RCM) Selected GCM-RCM 

combination 

CCSM (NCAR Community 

Climate System Model) 
CRCM (Canadian Regional Climate 

Model) 

CCSM-CRCM 

CGCM3 (Canadian Global 
Climate Model v.3) 

CGCM3-CRCM 

RCM3 (Regional Climate Model v.3) 
CGCM3-RCM3 

GFDL-RCM3 



GFDL (Geophysical Fluid 
Dynamics Laboratory) 

ECP2 (Experimental Climate Prediction 
Center) 

GFDL-ECP2 

 

 

Table 3. Different scenarios used in this study 

Scenario Case Description Land use  Precipitation Period  

1 

U1 10% urbanization 

NLCD2011 

Observed from NOAA 2000 to 2015 

 U2 30% urbanization 

 U3 50% urbanization 

 U4 70% urbanization 

2 

 LU1 1992 land use NLCD1992 

 LU2 2001 land use NLCD2001 

 LU3 2006 land use NLCD2006 

 LU4 2011 land use NLCD2011 

 LU5 2050 land use Predicted 2050 

3 

 

 L1 Rain barrel only 
NLCD2011 

 
 L2 Rain garden only 

 L3 Both LID 

4 

 C1 CCSM-CRCM 
NLCD1992 for 

baseline; 

Predicted 2050 

for future 

From model 

Baseline 1968 

to 1999 

Projection 2038 

to 2069  

 C2 CGCM3-CRCM 

 C3 CGCM3-RCM3 

 C4 GFDL-RCM3 

   C5       GFDL-ECP2 
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